Homologation of L-Threonine to α -Epimer β -Amino- α , γ -dihydroxy Aldehydes and Acids *via* Stereoselective Reduction of 2-Thiazolyl Amino Ketones

Alessandro Dondoni,* Daniela Perrone and Pedro Merino

Dipartimento di Chimica, Laboratorio di Chimica Organica, Università, Ferrara, Italy

The differentially protected 2-thiazolyl amino ketones **3** and **7** obtained in high yield from the L-threonine derived methyl ester **2** and 2-lithiothiazole serve as key intermediates to aldehydes **6** and **11** by *syn*- and *anti*-stereoselective reduction (diastereoselectivity $\ge 95\%$) of the carbonyl and liberation of the formyl group from the thiazole ring; the latter compounds are smoothly oxidized to acids **12** and **13**.

Recent investigation from this laboratory has provided a stereoselective route to syn and anti α -hydroxy- β -amino aldehydes by one-carbon chain-elongation of differentially protected α-amino aldehydes employing 2-trimethylsilylthiazole as a masked formyl anion equivalent.¹ The synthetic utility of these functionalized aldehydes for the preparation of amino sugars and sphingosines has been demonstrated.1 Further application of these compounds may be foreseen as advanced intermediates to α -hydroxy- β -amino acids,² a class of synthetic targets of considerable interest because of their presence in various peptidic enzyme inhibitors such as bestatin and pepstatin.³ In this communication we describe the conversion of the L-threonine derived methyl ester 2 as a model system to epimer aldehydes 6 and 11 via the 2-thiazolyl amino ketone 3. This key intermediate can be readily prepared on a multigram scale by high yield substitution on the ester 2 with 2-lithiothiazole without substantial side reactions.⁴ The sequence shows a convenient route to chiral units of synthetic utility from an α -amino acid⁵ employing a new thiazole-based strategy⁶ which circumvents the use of the corresponding α -amino aldehyde as intermediate.⁷

Treatment of the *N-tert*-butoxycarbonyl-2,3-isopropylidene-L-threonine methyl ester⁸ **2** in diethyl ether at low temperature with 2-lithiothiazole produced the 2-thiazolyl amino ketone **3**[†] in *ca*. 80% yield (Scheme 1).[‡] The ketone **3** was identical by optical rotation and NMR spectroscopy to the compound obtained by addition of 2-trimethylsilylthiazole to *N*-Boc-L-threoninal acetonide^{1b} and oxidation of the resulting alcohol under neutral conditions.⁹ This indicates that the chiral integrity of ester **2** and ketone **3** is preserved under the conditions above. The carbonyl reduction of **3** in methanol with NaBH₄ occurred with a high level of diastereoselectivity (ds \geq 95% by NMR) to afford the expected⁹ non-chelation controlled product, *i.e.* the alcohol *syn*-**4** which was isolated in 95% yield. The sense and level of diastereofacial selectivity did not change by using various hydride releasing agents,^{9,10}

† Selected spectroscopic data for 3: oil, $[\alpha]_D^{20} = -42.7^\circ$ (c 0.63, CHCl₃); IR (CHCl₃) v/cm⁻¹ 1700; ¹H NMR (80 MHz, CDCl₃, 340 K) δ1.31 (s, 9H), 1.45 (d, 3H, J 6.4 Hz), 1.67 (bs, 6H), 4.20 (m, 1H), 5.35 (d, 1H, J 6.3 Hz), 7.68 (d, 1H, J 3.2 Hz), 8.01 (d, 1H, J 3.2 Hz). For 6: oil, $[\alpha]_D^{20} = -4.0^\circ$ (c 1.2, CHCl₃); IR (CHCl₃) v/cm⁻¹ 1700; ¹H NMR (300 MHz, CDCl₃) & 1.17 (d, 3H, J 6.1 Hz), 1.42 (s, 9H), 1.50 (s, 3H), 1.53 (s, 3H), 4.05 (ddd, 1H, J 10.3, 2.2 and 1.7 Hz), 4.19 (dq, 1H, J 6.1 and 1.7 Hz), 4.51 (d, 1H, J 2.2 Hz), 5.09 (d, 1H, J 10.3 Hz), 9.51 (bs, 1H). For 11: oil, $[\alpha]_D^{20} = -24.3^\circ$ (c 0.9, CHCl₃); IR (CHCl₃) v/cm⁻¹ 1700; ¹H NMR (300 MHz, CDCl₃) & 1.21 (s, 3H), 1.34 (d, 3H, J 6.2 Hz), 1.47 (s, 9H), 1.49 (s, 3H), 3.58 (m, 1H), 4.0 (m, 1H), 4.26 (m, 1H), 5.50 (d, 1H, *J* 10.3 Hz), 9.65 (bs, 1H). For **12**: oil, $[a]_D^{20} = +6.8^{\circ}$ (*c* 0.37, CHCl₃); IR (CHCl₃) v/cm⁻¹ 1720; ¹H NMR (300 MHz, $CDCl_3 + D_2O(\delta 1.14 (d, 3H, J6.3 Hz), 1.41 (s, 9H), 1.49 (s, 3H), 1.51$ (s, 3H), 3.97 (ddd, 1H, J 10.2, 2.2 and 1.6 Hz), 4.16 (dq, 1H, J 6.3 and 1.6 Hz), 4.61 (d, 1H, J 2.2 Hz), 5.17 (d, 1H, J 10.2 Hz). For 13: oil, $[\alpha]_D{}^{20} = -20.3^{\circ} (c \ 0.59, \text{CHCl}_3); \text{IR} (\text{CHCl}_3) \text{v/cm}^{-1} 1720; {}^{1}\text{H} \text{NMR} (300 \text{ MHz}, \text{CDCl}_3 + \text{D}_2\text{O}) \delta 1.32 (d, 3\text{H}, J \ 6.1 \text{ Hz}), 1.42 (s, 3\text{H}), 1.45$ (s, 9H), 1.54 (s, 3H), 3.70 (m, 1H), 4.20 (m, 1H), 4.45 (m, 1H), 5.30 (d, 1H, J 10.2 Hz).

[‡] All compounds exhibited satisfactory spectra (¹H and ¹³C NMR, IR) and analytical data. Quoted yields refer to pure compounds isolated by chromatography.

such as LiAlH₄-LiI, LiBH(Bu^s)₃ (L-Selectride), NaAlH₂-(OEtOMe)₂ (Red-Al). The all *syn* arrangement of substituents in **4** was confirmed following its conversion into the 1,3-dioxane **5** (98%) by acid-catalysed migration of the acetonide protection. The ¹H NMR spectrum of **5** showed relatively small coupling constants (*J*) between H-1-H-2 (1.9 Hz) and H-2-H-3 (1.3 Hz) and the ¹³C NMR spectrum exhibited two distant signals for the acetonide methyl groups¹¹ (δ 18.24 and 28.74) in agreement with a *cis* equatorial-axial disposition of the 1,3-dioxane ring protons and a chairconformation. Compound **5** subjected to the standard one-pot thiazolyl-to-formyl deblocking protocol¹ gave the aldehyde **6**[†] (72%).

In order to reverse the sense of the diastereofacial selectivity of the carbonyl reduction we decided to change the

Scheme 1 Reagents and conditions: i, see ref. 8; ii, 2-lithiothiazole (from 2-bromothiazole and BuⁿLi at -78 °C), Et₂O, -50 °C; iii, NaBH₄, MeOH, -60 °C, 1 h; iv, 0.5 mol dm⁻³ CF₃CO₂H, CH₂Cl₂, room temp., 5 min; v, see ref. 1; vi, 0.5 mol dm⁻³ CF₃CO₂H, CH₂Cl₂, room temp., 15 min; vii, Bu'Me₂SiCl, imidazole, dimethylformamide, 60 °C, 45 min; viii, L-Selectride [LiBH(Bu^s)₃], THF, -78 °C, 1 h then Bu₄ⁿNF, room temp., 1 h; ix, Me₂C(OMe)₂, (1*S*)-10-camphorsulphonic acid (CSA), acetone, room temp., 2 h; x, KMnO₄, BuⁱOH, KH₂PO₄ (buffer, pH = 7), room temp., 3 min

O, N-protecting group arrangement of 5. Thus, removal of the acetonide protecting group gave the β -hydroxy ketone 7 (95%) which treated with the Evans borohydride¹² Me₄-NBH(OAc)₃ produced the 1,3-diol anti-9 with a good level of diastereoselectivity (ds = 85%). The protection of the hydroxy group of 7 with the *tert*-butyldimethylsilyl group by treatment with tert-butyldimethylchlorosilane afforded the O-silvl derivative 8(90%) which upon carbonyl reduction with LiBH(Bu^s)₃ (L-Selectride) in tetrahydrofuran (THF) and in situ desilylation with Bun₄NF produced anti-9 as a single observable diastereoisomer by NMR spectroscopy (ds \geq 95%) in 81% islolated yield. The reduction of **8** with diisobutylaluminium hydride (DIBAL-H) gave an identical high degree of anti diastereoselectivity. The relative configuration at C-1 and C-2 was confirmed by the ¹H and ¹³C NMR spectra of the 1,3-dioxane derivative 10 (75%).§ In this case, the observed coupling constant between H-1 and H-2 (5.1 Hz) and the rather close signals for the two acetonide methyls (δ 23.80 and 26.82) indicated a *trans* diaxial relationship and a twisted boat conformation.¹¹ As for the addition of 2-trimethylsilylthiazole to N-monoprotected aldehydes,^{1b} the sense of diastereofacial selectivity in the reduction of 8 to 9 is consistent with a chelation-controlled model arising from an intramolecular proton-bridge. Finally, the aldehyde 11[†] (68%) was revealed from 10 by the usual unmasking protocol.1

The *O*, *N*-protected β -amino- α , γ -dihydroxy aldehydes **6** and **11** were smoothly converted by oxidation with potassium permanganate into the corresponding carboxylic acids **12**[†] and **13**.[†]

Application of this technology to the homologation of other α -amino acids into *syn* and *anti* α -hydroxy- β -amino aldehydes and acids now becomes of interest.

§ In the reaction of 9 with acetone (Scheme 1, ix) a minor compound arose (ca. 20%) from acetonide formation between the amidic and the primary hydroxy groups.

We thank CNR (Rome) for financial support and Ministerio de Educacion y Ciencia (Spain) for a fellowship to P. M.

Received, 13th June 1991; Com. 1/02850B

References

- 1 (a) A. Dondoni, G. Fantin, M. Fogagnolo and A. Medici, J. Chem. Soc., Chem. Commun., 1988, 10; (b) A. Dondoni, G. Fantin, M. Fogagnolo and P. Pedrini, J. Org. Chem., 1990, 55, 1439.
- 2 Y. Kobayashi, Y. Takemoto, Y. Ito and S. Terashima, *Tetrahedron Lett.*, 1990, **31**, 3031; T. Matsumoto, Y. Kobayashi, Y. Takemoto, Y. Ito, T. Kamijo, H. Harada and S. Terashima, *Tetrahedron Lett.*, 1990, **31**, 4175; C. Palomo, A. Arrieta, F. P. Cossio, J. M. Aizpurua, A. Mielgo and N. Aurrekoetxea, *Tetrahedron Lett.*, 1990, **31**, 6429.
- 3 C. N. C. Drey, Chemistry and Biochemistry of the Amino Acids, ed. C. G. Barrett, Chapman and Hall, London, 1985, ch. 3. See also: K. Iizuka, T. Kamijo, H. Harada, K. Akahane, T. Kubota, H. Umeyama and Y. Kiso, J. Chem. Soc., Chem. Commun., 1989, 1678.
- 4 M. J. Jorgenson, Org. React., 1970, 18, 1.
- 5 G. M. Coppola and H. F. Shuster, Asymmetric Synthesis. Construction of Chiral Molecules Using Amino Acids, Wiley, New York, 1987.
- 6 A. Dondoni, Phosphorus, Sulphur, Silica, 1989, 43, 25; A. Dondoni, Pure Appl. Chem. 1990, 62, 643.
- 7 J. Jurczak and A. Golebiowski, Chem. Rev., 1989, 89, 149.
- 8 P. Garner and J. M. Park, J. Org. Chem., 1989, 54, 702.
- 9 A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici and P. Pedrini, J. Org. Chem., 1987, 52, 2361.
- 10 T. Oishi and T. Nakata, Acc. Chem. Res., 1984, 17, 338; H. Iida, N. Yamazaki and C. Kibayashi, J. Org. Chem., 1986, 51, 3769.
- S. D. Rychnovsky and D. J. Skalitzky, *Tetrahedron Lett.*, 1990, 31, 945; D. A. Evans, D. L. Rieger and J. R. Gage, *Tetrahedron Lett.*, 1990, 31, 7099.
- 12 D. A. Evans, K. T. Chapman and E. M. Carreira, J. Am. Chem. Soc., 1988, 110, 3560.